
ECE549 Final Report
Agricultural Image Segmentation

Ufuk Soylu, Ankit Raj, Yuqi Li, Berk Iskender

Abstract—Although there has been a lot of progress in
computer vision on the different aspects of understanding and
analyzing the natural images obtained using commercial imaging
devices, aerial images that are captured using airborne devices
are still mostly unexplored. In this project, we try to address
a very challenging and practical application of segmentation of
aerial agricultural images. We study and analyze different aspects
related to deep learning based segmentation – (i) comparison
between several successful deep neural network architectures,
(ii) the effect of the training loss, (iii) using weighted loss to
tackle imbalanced classes, (iv) comparison between shallow and
wider network, and (v) improvement due to pre-training. 1

I. INTRODUCTION

In this project, we study and analyze different algorithms
for aerial image semantic segmentation in agriculture which
is of a massive economic potential. We think that solving this
problem will eventually pave the way to sustainable agriculture
by helping the government and farming industry with more
relevant information about the farmland. This will be helpful
for meeting society’s present food and textile needs without
compromising the ability of future generations to meet theirs.
For this segmentation task, we use deep neural network based
algorithms as they have been proven to be very successful for
large-scale computer vision problems in diverse areas such as
medicine [1] and astronomy [2].
We use the Agriculture-Vision dataset [3] that consists of
multi-modal images (RGB image along with near-infrared
measurement channel). We examine the dataset, whose de-
scription can be found in Section II. This analysis reveals how
few categories have scant images compared to others, which
might lead to over-fitting of the network on categories having
abundant samples or very poor performance on categories
having very few samples. To avoid this poor-performance,
we explore the usage of weighted-loss which penalizes the
network (depends on the weight value) if it mis-classifies
for categories with scant samples, while training. Further, we
compare two loss functions popularly used for multi-class
segmentation problems and find that BinaryCrossEntropy(·)
gives the best performance. We implement 4 state-of-the-
art architectures for segmentation – (i) U-Net, (ii) Feature
Pyramid Network (FPN), (iii) DeeplabV3, and its variants,
and (iv) Dilated Residual Network (DRN), and do extensive
comparison between them. Additionally, we experiment on
how deeper networks (as backbone or as feature extractor)
help in improving the segmentation performance. Details of

1Video link: https://youtu.be/Wn4td1cU-6E

the proposed approach and experiments along with extensive
results are in Sections III and IV.

II. DATASET

We have used a subset of the large-scale aerial agricultural
Agriculture-Vision image dataset [3] which was published
for a challenge in CVPR2020 (https://www.agriculture-vision.
com/dataset). The dataset contains high-resolution, multi-band
images and has corresponding multiple types of patterns an-
notated by experts. The subset contains 21061 aerial farmland
images captured across the US. It contains 12901 training and
4431 validation images. Each image consists of four 512x512
color channels, which are RGB and Near Infra-red (NIR). Each
image has a boundary map and a mask. The boundary map
indicates the region of the farmland, and the mask indicates
valid pixel labeling of the image. The dataset contains six types
of annotations: Cloud shadow (C.S.), Double plant (D.P.),
Planter skip (P.S.), Standing Water (S.W.), Waterway (W.)
and Weed cluster (W.C.). These field anomalies have great
impacts on the potential yield of farmlands, thus accurately
locating them is extremely important. These six patterns are
stored separately as binary masks due to potential overlaps.
The organizers have kindly agreed to share the dataset with
us.

A. Dataset Examples

Images have the resolution up to 10 cm per pixel (cm/px).
Custom filters are used to obtain NIR instead of blue channel.
Seperate blue channel images were captured at 20 cm/px
resolution - upsampled later to align with corresponding NIR-
R-G images. Images are normalized using the 5th and 95th

percentile pixel values as thresholds. Then, images are stored
as NIR and RGB separately in JPG format. Since unprocessed
images have extremely large sizes and sparse annotations,
subsampling methods such as flipping and cropping is used
(preserving the anomaly patterns), to increase the proportion
of annotated pixels and to decrease the computation time and
memory consumption. Final image size is 512× 512. In Fig.
1, these techniques can be observed.

B. Labeling Issues

Labels are not necessarily exclusive, meaning a pixel la-
belled as weed cluster can also be labelled as double plant.
This is quite different from the common semantic segmenta-
tion problem, where the labelled pixel belongs to only one
of the classes. We will explain more on designing the loss for
such multiple labels in III-B. Furthermore, after examining the

https://youtu.be/Wn4td1cU-6E
https://www.agriculture-vision.com/dataset
https://www.agriculture-vision.com/dataset


Fig. 1: Illustration of field image patch generation for AgriV-
ision.

dataset, it was found that several labelings were problematic,
making this problem even more challenging.

C. Pixel-wise Label Ratios

After inspecting the training data for the ratios of differ-
ent labels, we observed that the vast majority of the non-
background pixels (including at least one label) belong to the
weed cluster and the ratios of each class label over the total
number of labels in all pixels are as follows:

• Weed cluster label ratio: 70.1%
• Waterway label ratio: 5.8%
• Standing water label ratio: 7.1%
• Planter skip label ratio: 0.7%
• Double plant label ratio: 3.0%
• Cloud shadow label ratio: 13.3%
These ratios suggest that to segment minority classes better,

we may need to specify our loss function with a specific
weighting. Otherwise, a network would be much more sen-
sitive towards detecting areas with dominant classes.

III. PROPOSED APPROACH

A. Network Architectures and experiments

For image segmentation, we require the network to learn
information at different scales as the object of interest can
be of any size within the image. This is particularly critical
for very high resolution images with small regions of interest,
which have to be segmented. We plan to implement four net-
works types and compare their performance on this multiband
agricultural image dataset (Feature Pyramid Networks, Dilated
Residual Networks, DeepLabV3 and U-net.)

Fig. 2: Architecture of Feature Pyramid Network (FPN) – left
part is the bottom-up pathway, acting like encoder, and right
part is top-down, upsampling and combining information using
lateral connection from bottom-up at several scales to get the
prediction.

1) FPN-based Segmentation: Feature Pyramid Networks
(FPNs) [4] have been particularly popular in object detection,

Fig. 3: A example of gridding artifact [5].

but recently been used for segmentation task as well. FPN
can be broadly divided into two parts – Bottom-Up pathway
and Top-Down pathway and Lateral Connection. The bottom-
up pathway is the feed-forward computation of the backbone
ConvNet, typically ResNet. One pyramid level is defined for
each stage. The output of the last layer of each stage will
be used as the reference set of feature maps for enriching
the top-down pathway by lateral connection. In the Top-Down
pathway, the higher resolution features is upsampled spatially
coarser, but semantically stronger, feature maps from higher
pyramid levels. More specifically, the spatial resolution is
upsampled by a factor of 2 using the transposed convolution.
Each lateral connection merges feature maps of the same
spatial size from the bottom-up pathway and the top-down
pathway. The high-level architecture is shown in the Fig. 2.
In our experiments, we have used first 4 blocks of ResNet-
50 or ResNet-18 for the bottom-up pathway. For top-down,
standard 3×3 transposed convolutions have been used at every
level for upsampling followed by ReLU activation and 1× 1
convolutions. For lateral connections from the feature maps in
the bottom-up part, we use two 3×3 convolutions followed by
ReLU activation and 1×1 convolutions. The upsampled feature
map and lateral connections are added together and passed
through two convolution layers along with ReLU. These 3
operations – upsampling, lateral connection, convolution on
addition of upsampling and lateral connection are done at three
stages (for four blocks/levels of ResNet).

2) DRN: Dilated Residual Networks (DRNs) [5] provide an
easy and effective way of making a convolution layer to cap-
ture semantics at different scale without increasing overhead in
terms of computation. They use different atrous convolutions
(also known as dilated convolution, or convolutions with
holes). By varying number of holes, the amount of receptive
field can be changed significantly – by allowing more holes,
the receptive field increases with same number of parameters
in the convolution kernel. Different layers having different
dilations allow to capture information at different scales which
is vital for segmentation, particularly when the object of
interest occupies quite small region of the image. However,
the dilated convolution layers also introduces the gridding
artifact (Figure 3): when a feature map has higher-frequency
content than the sampling rate of the dilated convolution, the
final semantics appear disconnected and has holes around the
edge of objects. This artifact is compensated by adding more
blocks and removing residual connection from some the added
blocks. We have the implementation of the DRNs in Pytorch
publicly available on Github (https://github.com/fyu/drn) and

https://github.com/fyu/drn


Fig. 4: Layer architectures of DRN-D-22 network [6].

we adopted the DRN-D-22 structure. In Figure 4, Each
rectangle represents a Conv-BN-ReLU group, and the numbers
specify the filter size and the number of channels in that layer.
Blue colored rectangles are Conv-BN-ReLU groups with stride
2, and downsampling occurs in blue lines. The purple colored
rectangles adopt dilated convolutions with the dilated factors
described beneath each network architecture. We trained this
DRN with SGD optimizer for 35 epochs with learning rate
0.01.

3) DeepLabV3 & DeepLabV3+: A very recent work [7]
proposed DeepLabV3 architecture for the task of semantic
segmentation. In this paper, they mention that there are two
challenges in applying Deep Convolutional Neural Networks:
(i) reduced feature resolution due to pooling operations, (ii)
existence of objects at multiple scales. To overcome these
challenges, they use atrous convolution in the framework of
spatial pyramid pooling. In particular, they proposed to benefit
from atrous convolution as a context module and tool for
spatial pyramid pooling. The network architecture can be
found in Figure 5.

Fig. 5: Architecture of DeepLabV3 [7].

DeepLabV3 architecture is improved in [8] by adding a
simple and effective upsampling path which consists of several
bi-linear upsampling steps with skip connections. In [8], they
named their architecture as DeepLabv3+ which can be seen
in Figure 6.

Fig. 6: Architecture of DeepLabV3+ [8].

DeepLabV3+ architecture consists of an endocer and a
decoder. In [8], they propose to use DeepLabV3 architecture
as the encoder. DeepLabV3 output stride is generally 16.
Therefore, their proposed decoder structure takes output stride
of 16 as the input. They first propose to bi-linearly upsample

by a factor of 4 and then concatenate with corresponding
low level features. After concatenation, they apply additional
convolution layer to refine the features and subsequently,
they apply bi-linear upsampling by a factor of 4. In [8],
they empirically show that adding decoder brings about 0.8%
improvement when using output stride= 16. Based on the
observation in [8], we propose to improve the upsampling path
in DeepLabV3 architecture. Our modification is not exactly
same as DeepLabV3+. We propose to use Conv2DTranspose
layer to learn the upsampling rather than using simple bi-linear
upsampling. Similar to DeepLabV3+ architecture, we propose
to use skip connections between low level feature maps and
corresponding upsampling layers. We denoted the proposed
network as Modified-DeepLabV3+ in the following sections.

4) U-Net: This architecture [9] is built upon the architec-
ture of ”fully convolutional network” [10]. It consists of a
contracting and an upsampling part. Both parts are almost
symmetric in terms of the number feature channels. Overall
structure does not include any fully connected layers and
segmentation map only consists of pixels for which full
information is available in the input image allowing smooth
segmentation by ”overlap-tile” strategy by adjusting the tile
size in accordance with the scale of pooling operations. This
is especially important when the task is to segment large
images as in our case, decreasing GPU memory utilization
while preserving the resolution. Overall architecture can be
seen in Fig. 7. Each step in the contracting part consists of two
3x3 convolutions, including a ReLU operation as nonlinearity
and after the second 3x3 convolution, 2x2 max pooling is
applied with a stride of 2 for downsampling. Number of
feature channels are doubled at each step. In the expansive
path, every step includes an upsampling of the input followed
by a 2x2 convolution (up-convolution), halving the number of
channels. Then, output of up-convolution is concatenated with
the corresponding intermediate output from the contracting
path and two consecutive 3x3 convolutions are performed
with the non-linearities being ReLU layers as in contracting
path. Final layer includes a 1x1 convolution layer maps multi-
component feature vector to the number of classes used in the
algorithm.

Fig. 7: Architecture of U-Net (32x32 pixels at lowest resolu-
tion). The number of channels at the top, x-y size at the lower
edge of each box.

B. Training Losses
We decided to use two types of training losses as follows:



1) Binary Cross Entropy (BCE) Loss: We assume the
output dimension of the network is 6 × 512 × 512, and each
channel of the output represents the binary label map of each
class type. Hence it is suitable to use Binary cross entropy
Loss which builds upon the idea of entropy from information
theory. To compare two 2D binary image of size P , we define
BCE as follows:

BCE =
1

6P

6∑
j=1

P∑
i=1

−tij log(f(sij))−(1−tij) log(1−f(sij))

(1)
where f is sigmoid function, i is the iterator of pixel location,
j is the iterator of labels, tij ∈ {0, 1} is the class, sij is
the score (output of the network). We used average BCE
as a training loss. Average BCE was computed by averaging
BCE over all pixels and labels. According to the data, we also
experimented using a specific weighting scheme as explained
in Section II-C and IV-D.

2) Cross Entropy (CE) Loss: In this case, we assume the
output dimension of the network is 7× 512× 512, where the
0-th channel of the output represents the logit of farmland
background and the rest six channels represents the logit of
six other class types. Compared to the BCE loss described
above, this loss discourages overlapping between class types
and the pixel’s class are exclusive. We can transform the output
size to 6 × 512 × 512: let z ∈ R7 denote the logits of one
pixel, then we map it to a 6×2-dimensional matrix w: w[i] =
softmax(z[0], z[i+1]), then apply the common cross entropy
loss to w and labels and take the sum over all pixels. The last
step is essentially the same as BCE loss.

C. Evaluation

We used mean Intersection-over-Union (mIOU ) to deter-
mine the quality of the predicted semantics which is a common
metric for segmentation tasks. For multi-class segmentation
problem, it is defined as follows:

mIOU :=
1

C

∑
c

Area (Pc ∩ Tc)
Area (Pc ∪ Tc) (2)

where C is the number of classes, Pc and Tc are the predicted
mask and ground truth mask of class c respectively.

IV. EXPERIMENTS AND RESULTS

In this section, we describe and analyze different experi-
ments and their results. To this end, we compare the efficacy of
different architectures for the task on aerial agriculture dataset.
Subsequently, we do detailed study of several aspects of modi-
fication in deep learning training within each architecture, and
how they impact the performance, for e.g. – change in training
loss, using pretrained network for sub-network initialization,
weighted loss (with weights depending on proportion of each
class in training data), wider (or shallower) vs deeper network
study.

A. Loss functions comparison

We use BCE loss (Sec. III-B1) and CE loss (Sec. III-B2)
to train the DRN with the same network architecture, number
of epochs, optimizer and learning rate. The evaluation on the
validation set is shown in Table I. The mIoU using BCE
loss is significantly higher than that of CE loss. This can be
explained by the fact that a pixel in an image in the dataset
might correspond to multiple classes. Since we define a single
background (BG) class for all the non-background classes, the
loss function will try to activate the BG class (corresponding
to inactive non-BG class(es)) and deactivate the BG class
(corresponding to active non-BG class(es)) at the same time.
This leads to confusion while training which might explain
the poor performance of the CE loss. Hence, subsequently,
we adopted the BCE loss for our study.

Losses Weed W.way S.W. P.S. D.P. C.S. mIoU
CE 0.167 0 0 0 0 0 0.028

BCE 0.355 0.231 0.137 0.036 0.104 0.186 0.175

TABLE I: DRN: IOUs of each class trained with different
losses.

B. Comparison across different models

Fig. 8: Results using different networks for a sample

We compare the performance across the best implementa-
tion of the different architectures discussed in Section III-A.
All the networks have been trained using the Objective (1).
Since different segmentation architectures have been proposed
in the literature over recent few years, this experiment indicates
which architecture is particularly more helpful for the agricul-
ture dataset. Figure 8 shows the result of the segmentation of
all classes for one sample.



Architecture Weed Waterway StandingWater PlanterSkip DoublePlant CloudShadow mIoU
U-Net 0.477 0.345 0.266 0.002 0.340 0.459 0.315

DeepLabV3+ 0.469 0.339 0.316 0.008 0.241 0.363 0.289
FPN 0.481 0.325 0.330 0.054 0.361 0.430 0.331
DRN 0.355 0.231 0.137 0.036 0.104 0.186 0.175

TABLE II: Comparison across different architecture trained using the Objective (1) – we have used our best performing network
for each architecture for evaluation.

C. DeepLabV3 & Modified DeepLabV3+

Subsequently, we use the same training scheme for ex-
periments on both, DeepLabV3 and DeepLabV3+. Each net-
work is trained for 50 epochs with a batch-size of 6. The
torch.optim.RMSprop() optimizer with a learning rate of 10−6

and momentum=0.9 has been used to optimize the loss func-
tion. The network parameters that produce the lowest BCE
Loss in validation set is saved and used for quantitative
evaluation. It has been observed that validation error saturates
around 10 − 15 epochs. Another issue is finding the right
threshold of the sigmoid output from the network as for
the evaluation of quantitative metric IoU , hard outputs are
required. So, threshold level for each classes are selected by
doing a line search on validation set.
Learning Upsampling Path. In this experiment, we compare
DeepLabV3 architecture and modified DeepLabV3+ architec-
ture described in the previous section. So, the main comparison
is between bi-linear upsampling by a factor of 16 and learning
upsampling path by using Conv2DTranspose layers. In order
to make a fair comparison, we fix the number of network
parameters at 8.5 × 106. It has been observed that learning
upsampling path improves the mIoU by 3.7%. IoU results
for each class can be found in Table III.
Larger Network. After observing that modified DeepLabV3+
architecture performs better, we increased the network capacity
by adding more channels, layers and skip connections. The
learnable parameters increased from 8.5 × 106 to 20 × 106.
The capacity is increased by adding layers in encoder part.
The encoder part is depicted in Figure 5. In order to increase
the depth, we added more Block3 units which uses a dilated
convolution layer with rate of 2. In order to increase the
width, we increase the number of channels in all layer. It has
been observed that larger network increased mIoU by 14.8%.
Intersection over Union(IoU) results for each classes can be
found in Table IV.

W. W.way S.W. P.S. D.P. C.S. mIoU
(i) 0.43 0.259 0.376 0.03 0.13 0.23 0.24
(ii) 0.44 0.287 0.312 0.001 0.178 0.29 0.252

TABLE III: Learning the upsampling path; (i) DeepLabV3
architecture, (ii) Modified DeepLabV3+ architecture.

W. W.way S.W. P.S. D.P. C.S. mIoU
(i) 0.444 0.287 0.312 0.001 0.178 0.29 0.252
(ii) 0.469 0.339 0.316 0.008 0.241 0.363 0.29

TABLE IV: Comparison of different network sizes: number
of learnable parameters – (i) 8.5× 106, (ii) 20× 106.

D. U-Net

Deeper vs. Wider network ablation study. Using the
overall structure in Fig. 7, batch size of 4, binary cross-entropy
loss and Adam optimizer with a learning rate of 10−4 halved
at each 10 epochs, 3 different architectures were trained to see
the effect of having a wider or deeper network and their results
were compared and the best validation set outputs using binary
cross-entropy loss were compared. Uniform weighting for each
label is used as indicated in Table VI. These architectures
included, (i) 4, (ii) 6 and (iii) 7 downsampling layers with
first convolutional layer including 64, 32, 16 output channels
respectively. At each downsampling layer, number of channels
were doubled for each setting. Respectively, networks have
approximately (i) 8×106, (ii) 31×106, (iii) 31×106 trainable
parameters. Networks were trained for (i) 11, (ii) 16, and
(iii) 13 epochs at which they provided the best validation
BCEloss. Results can be seen in Table V. Thresholds for
segmentations were picked for each channel using grid search.
It can be observed that, a deeper architecture may work better
compared to shallow counterpart, keeping the total amount
of parameters fixed. Also, first setting with the decreased
complexity provides suboptimal results compared to the latter
two, and thus suggests that the latter two models are not over-
complex and do not overfit the training data.

(i) (ii) W.C. W. S.W. P.S. D.P. C.S. mIoU
4 64 0.433 0.208 0.363 0.030 0.238 0.203 0.246
6 32 0.469 0.307 0.231 0.002 0.322 0.344 0.279
7 16 0.477 0.345 0.266 0.002 0.340 0.459 0.315

TABLE V: U-Net, IoU values for each architectural setting: (i)
Total amount of downsampling layers, (ii) Number of channels
after the first convolutional layer.

Modification of binary cross-entropy loss. As indicated in
the previous parts, the data is significantly imbalanced in terms
of the labels that pixels are assigned. This motivated using
a weighting scheme on the loss function such that a larger
weight will be assigned to less frequent labels. The weighted
loss function L used for this purpose can be described as

L =

N∑
n=1

−wn[yn lnσ(xn) + (1− yn) ln(1− σ(xn))]

where N = 6, wn, σ, xn and yn are the number of labels,
weight for the n-th label, sigmoid function, output of the
network for n-th label and true label for n-th label respectively.
The weight matrix w = {w1, . . . , wN} was selected inversely
proportional to the ratios of different labels and changes in
individual IoU values were examined. Three different weights



settings, w = [w1, w2, w3, w4, w5, w6]’s, were utilized in the
experiments: (i) uniform, (ii) inversely proportional, where
each label was assigned with a weight inversely proportional
to its frequency in the data, (iii) modified inversely propor-
tional, where the weighing scheme is moderately inversely
proportional to the frequency of the labels in the data. Fre-
quencies were computed as the total number of the pixels
where respective label is 1 over the total number of labels
where they are 1 in all pixels. These ratios are indicated in
Section II-C. Accordingly, (ii) has the weighting scheme of
w = [1/0.701, 1/0.058, 1/0.071, 1/0.007, 1/0.030, 1/0.133]
and (iii) has w = [1, 4, 4, 16, 4, 2]. Training of these networks
were performed as a fine tuning on top of the best performing
pre-trained 7 layer U-Net structure as indicated in Table V
using again the Adam optimizer and a lower learning rate of
10−5. The goal was to observe improvement especially on
the ”planter skip” class labels, however, weighting did not
provide the expected change in the eventual results. Results
are provided in Table VI. There is approximately 20 times
increase in the mIoU value of planter skip class, however,
result is still pretty far from being considered as reasonable.
This is due to having almost no examples in the training data.

w Weed W.way S.W. P.S. D.P. C.S. mIoU
i 0.477 0.345 0.266 0.001 0.340 0.459 0.315
ii 0.391 0.306 0.254 0.018 0.266 0.332 0.262
iii 0.477 0.304 0.281 0.009 0.268 0.407 0.293

TABLE VI: U-Net, IoU values for each loss weighting
scheme: (i) Uniform weighting, (ii) inversely proportional
weighting, (iii) moderate inversely proportional weighting as
explained in Section IV-D.

E. FPN

For this set-up, we have used Adam optimizer with
exponentially decaying learning rate with initial learning rate
being 10−3. Training was done for 15 epochs, with weight
decay (factor of 10−5) as regularization using the BCE loss
given by Objective (1).
ResNet-18 and ResNet-50 as encoder: FPN uses a feature
extractor (also referred as encoder) in its bottom-up pathway.
ResNet and its variants have been popularly used for this
task. Goal of this experiment is to compare two variants
of ResNet, ResNet-18 and ResNet-50 as feature extractor
for segmentation task, keeping other network structure, i.e.,
top-down and lateral connections the same. No pre-training
has been done for either framework. Results in the Table VII
show that a deeper encoder architecture, such as ResNet-50
performs much better than a shallow one, ResNet-18. It
indicates that for images in the dataset, features learnt
by ResNet-50 are better and more expressive than those
learnt by ResNet-18. Hence even more expressive encoder
such as ResNet-101 or ResNet-152 might result in further
improvement.
With and without pre-training: Transfer learning is an
important concept and quite useful in many deep learning
applications. Using a pre-trained model (trained on a task)

Architecture mIoU
FPN (ResNet-50) 0.301
FPN (ResNet-18) 0.258

TABLE VII: FPN: comparison between two different back-
bone architecture, ResNet-50 and ResNet-18, both without
pre-training.

and fine tune for a somewhat related task helps in faster and
better training. In this, we compared FPN with ResNet-50
as encoder across two training strategies: (i) ResNet-50 part
initialized with the pre-trained network on ImageNet for
classification, and (ii) end-to-end training using only for
the given dataset and task i.e. non pre-training. Table VIII
shows the comparative result for the two set-ups. Results
clearly indicate that pre-training helps in learning good feature
representation in the bottom-up pathway (encoder part) for the
FPN, which helps in improving the segmentation performance.

Architecture mIoU
FPN (No pre-training) 0.301

FPN (Pre-trained ResNet-50) 0.331

TABLE VIII: FPN: comparison between two training schemes,
with or without pre-trained ResNet-50 model as backbone.

V. DISCUSSION AND CONCLUSIONS

In this project, we addressed a very challenging and practi-
cal application of segmentation of aerial agricultural images.
Individual discussions for various methods and experiments
were included in their respective sections. Overall, we stud-
ied and analyzed different aspects related to deep learning
based segmentation; performed comparisons between several
successful deep neural network architectures and shallow and
wider network, investigated the effect of the training loss by
using weighted loss to tackle imbalanced classes, and the
improvement due to pre-training.

APPENDIX

Name Tasks
Ankit Implement and experiments: FPN,

transfer learning, network architecture ablation
Berk Implement and experiments: U-Net,

loss function ablation, network architecture ablation
Ufuk Implement and experiments: DeeplabV3/+,

network architecture and method ablations
Yuqi Implement and experiments: DRN,

loss function ablation, data visualization and post-processing

TABLE IX: Statement of individual contribution

REFERENCES

[1] D. B. Larson, M. C. Chen, M. P. Lungren, S. S. Halabi, N. V. Stence, and
C. P. Langlotz, “Performance of a deep-learning neural network model
in assessing skeletal maturity on pediatric hand radiographs,” Radiology,
vol. 287, no. 1, pp. 313–322, 2018. 1

[2] A. Aniyan and K. Thorat, “Classifying radio galaxies with the convo-
lutional neural network,” The Astrophysical Journal Supplement Series,
vol. 230, no. 2, p. 20, 2017. 1



[3] M. T. Chiu, X. Xu, Y. Wei, Z. Huang, A. Schwing, R. Brunner,
H. Khachatrian, H. Karapetyan, I. Dozier, G. Rose et al., “Agriculture-
vision: A large aerial image database for agricultural pattern analysis,”
arXiv preprint arXiv:2001.01306, 2020. 1

[4] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125. 2

[5] F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 472–480. 2

[6] J.-Y. Park, Y. Hwang, D. Lee, and J.-H. Kim, “Marsnet: Multi-label
classification network for images of various sizes,” IEEE Access, vol. 8,
pp. 21 832–21 846, 2020. 3

[7] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
atrous convolution for semantic image segmentation,” arXiv preprint
arXiv:1706.05587, 2017. 3

[8] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 801–818. 3

[9] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241. 3

[10] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440. 3


